Table I. M-13C and X-I'C Spin-Spin Coupling Constants in Cage Complexes and **Heterobicyclo[2.2.2]octanes**

type	M or X	v	3 I^a	2 I^a	l Ja	$2/3$ $7a,b$	3J/2J	ref	
	Rh(III)	$H_{\rm NH}$	4.15	$\lesssim 0.3^e$		< 0.3	\sim 10		
	Rh(III)	NH ₂	3.42	$\lesssim 0.3^e$		< 0.3	\sim 10		
	Rh(III)	NO ₂	3.36	$\lesssim 0.3^e$		< 0.3	\sim 10		
Ш	Rh(III)			$\lesssim 0.3^e$		< 0.3			
	$[Rh(en)_3]^{3+}$					< 0.3			
	Pt(IV)	NO ₂	52				7.4		
	Pt(IV)	NHOH	40			≤ 2	5.7		
Ш	Pt(IV)					2.5			
	$[Pt(en)_3]^{4+}$					\leq 2			
П	$14N^+$ -CH ₃	variable ^d	4.5 ± 1	\leq 2	3 ± 0.5		n.o.		
П	$14N^+$ –CH ₃	H	4.8	~ 0	3.1		n.o.		
\mathbf{I}	$15N^{+} - H$	H	6.7	< 0.2	4.8		n.o.		
П	15 N	H	2.8	< 0.2	2.1		n.o.		
П	$P = 0$	н	47		63		9.4		

^a Coupling constants in Hz. ^bCoupling constants in the 1,2-ethanediamine moieties of the cage complexes. ^cMonodeprotonated at a coordinated amine. ^dFor a large range of substituents. 'Obtained by line widths. ^fNot observed.

Table II. ¹³C ³J Coupling Constants (Hz) and Magnetic Properties¹⁰ of Heteroatoms in Bicyclo[2.2.2] octane Ring Systems

heteroatom		$10^{-20}K^a$				
14 _N	\sim 5	\sim 23	0.5706	1.9324	1.6×10^{-2}	
15 _N	\sim 7	\sim 23	-0.4901	-2.7107		
31 _D	$~1$ \sim 50	~1	1.9581	10.829		
59C ₀			5.2344	6.3171	0.40	
103Rh	$3 - 4$	\sim 37	-0.1522	-0.8420		
$19!$ Ir			0.1440		1.5 ^e	
193 Ir			0.1568		1.5 ^e	
195pt	\sim 40	$~1$ – 62	1.0398	5.7505		

^a Reduced coupling constant, N A⁻² m⁻³. ^bMagnetic moment, μ_N . ^cMagnetogyric ratio, 10⁷ rad T⁻¹ s⁻¹. ^{*d*}Quadrupole moment, 10⁻²⁸ m². 'Reference lob.

es,^{11,13} where the apical carbon resonance was very broad for $[Co(sar)]^{3+}$ $(Y = H)$ but much narrower with electron-withdrawing substituents such as $-NO_2$.¹¹⁻¹³

A further feature observed was that the ratio *3J:2J* for all the heterobicycles remained approximately constant (Table **I).** Clearly, this would not be expected if direct overlap of orbitals (IV, **V)** was the reason for the large apical coupling constants, since the degree of orbital overlap would change dramatically for the heteroatoms ¹⁴N, ¹⁵N, ³¹P, ¹⁰³Rh, and ¹⁹³Pt, and hence the ratio *3J:2J* would also alter. We could expect, for example, that the radial extension of the d orbitals of the metal ions of the second- and third-row transition elements would be considerably greater than those of N and P. Furthermore, the similar values of ${}^3K_{M-{}^{13}C}$ and ${}^3K_{X-{}^{13}C}$ would not be expected if the degree of direct orbital overlap was drastically affected by changing the heteroatom. All these factors show conclusively that the large *3J* coupling constants result from the relatively fixed dihedral angle of $\sim 0^{\circ}$ between the heteroatom and the apical carbon and that direct through-space coupling can be ruled out. The lower $3/2J$ coupling constants (1,2-ethanediamine) as opposed to *2J* coupling constants (cap) probably arise from cancellation of *2J* and *'J* pathways (of opposite sign), while the *2J* and *4J* couplings are of the same sign and, hence, are basically additive.¹⁵

In summary, the large $M^{-13}C$ coupling constants observed in the apical positions of cage complexes result from a Karplus type relationship, which is consistent with mounting evidence on ^{13}C coupling constants. $6,8,15-18$ The coupling results also imply that direct coupling of the heteroatom with the apical carbon in bicyclo[2.2.2]octane ring type systems can be ruled out. These conclusions are consistent with theoretical calculations⁹ and de-

- Walter, S. **R.** *J. Am. Chem. SOC.* **1983,** *105,* 341 1-3417 and references therein.
- (17) Barfield, M.; Della, E. W.; Pigou, P. E.; Walter, S. R. *J. Am. Chem. SOC.* **1982,** *104,* 3549-3552.
- (1 8) Barfield, M.; Brown, *S.* E.; Canada, E. D., Jr.; Ledford, N. R.; Marshall, J. L.; Walter, S. R.; Yakali, E. *J. Am. Chem. SOC* **1982,** *104,* **1984,** 1646. 3355-3359.

ductions from the effects of various substituents on the properties of cobalt cage complexes. 11,19

Acknowledgment. We are grateful to the Research School of Chemistry NMR Service for the many ¹³C NMR spectra.

Research School of Chemistry **Peter A. Lay^{*20}** The Australian National University **Alan M. Sargeson*** Canberra, **ACT** 2601, Australia

Received May 12, 1986

Carbon-to-Boron Bridged o -Carboranes'

Sir:

Although many o-carboranes in which the two carbons are attached through carbon (or other) bridges are known,² the literature contains no examples of molecules in which the framework borons and carbons are attached through a simple carbon bridge.³ We have developed an easy synthesis of such compounds and describe it here.

We recently reported the reaction of carbomethoxycarbene with the B-H bonds of o -carborane⁴ to form the products of formal B-H insertion and noted that the C-H bonds were ignored by the carbene. We have used an intramolecular version of this

- (3) Organometallic bridges are known. For example, see: Kalinin, V. N.; Usatov, A. V.; Zakharkin, L. **I.** *Izo. Akad. Nauk SSSR, Ser. Khim.*
- (4) Zheng, G.; Jones, M., **Jr.** *J. Am. Chem. SOC.* **1983,** *105,* 6487.

⁽¹⁵⁾ Sarneski, J. E.; Erickson, L. E.; Reilley, C. N. *Inorg. Chem.* **1981,** *20,* 2137-2146 and references therein. (16) Barfield, M.; Canada, E. D., Jr.; McDaniel, C. R., Jr.; Marshall, J. L.;

⁽¹⁹⁾ Lay, P. **A.;** Sargeson, **A.** M., to be submitted for publication in J. *Am. Chem. Sot.*

⁽²⁰⁾ Present address: Department of Inorganic Chemistry, The University of Sydney, NSW 2006, Australia.

⁽¹⁾ Support by the National Science Foundation through Grant CHE 83- 18345 is gratefully acknowledged. We thank the Department of the Army for a generous supply of decaborane.

⁽²⁾ Boron Compounds, Gmellin Handbook of *Inorganic Chemistry;* Springer-Verlag: West Berlin, 1981; 1st Supplement, Vol. 3 and earlier volumes. Grimes, R. N. *Carboranes;* Academic: New York, 1970.

Scheme I

reaction, whose mechanism remains unknown, to produce the first carbon-to-boron bridged o-carboranes. o-Carboranylacetic acid **1** was converted to its acid chloride **2** and then to the diazo ketone **3** by treatment with excess diazomethane below -40 "C (Scheme I). Above this temperature an o-carborane acts as a catalyst for the decomposition of diazo compounds, as we have noted before.⁵ In this case polymethylene is the result of the relatively high temperature attempt to make **3.** Diazo ketone **3** can be decom**posed** by copper sulfate in toluene at 110 "C to give a single major product **(4,** mp 177-179 "C) in 90% yield as determined gas chromatographically. The reaction mixture was washed with $KOH/H₂O$ directly after the cessation of nitrogen evolution and the product of Wolff rearrangement **(5)** sought but not found. Precise mass spectrometry revealed the molecular formula of **4** to be $C_5B_{10}H_{14}O$.⁶ The infrared spectrum showed the presence of a C-H (3050, 3100 cm⁻¹) and a ketone (1750 cm⁻¹). The ¹H NMR spectrum confirmed that a single hydrogen remained attached to carbon ($\delta = 3.90$), and the coupled and decoupled ¹¹B NMR spectra showed that one boron had been substituted.⁷ As the 'H NMR spectrum also showed two methylene groups as AB quartets centered at $\delta = 2.94$, $J = 18.3$ Hz, and $\delta = 2.24$, $J =$ 19.7 Hz, the only remaining question concerned the point of attachment of the five membered ring. Two B-H bonds, at the 4,5,7,11 and 3,6-positions were within reach, and in principle either could have been attacked by the carbenoid reagent. A nuclear Overhauser experiment (NOE) showed that substitution was at the 4,5,7,1l-position.' Irradiation at the position of the remaining framework C-H (δ = 3.90) resulted in an Overhauser effect at

(5) Albagli, D.; Zheng, G.; Jones, M., Jr. *Inorg. Chem.* **1986,** *25,* 129. Mass spectrometric analyses were performed by the Midwest Center for **Scheme 111**

only one of the protons of the lower field AB quartet and showed no effect at all on the higher field AB quartet. Partial structures *6* (attack at 4,5,7,11) and **7** (attack at **3,6)** (Chart I) show that were the structute of the cyclized product to be **7,** two protons, one in each **AB** quartet, would have to be affected as they are at almost exactly the same distance from the C-H irradiated. Thus intramolecular addition occurs most easily at the 4,5,7,11 position, as is the case in the intermolecular version of this reaction.⁴

The analogous six membered ring **8** (mp 124-126 "C) can be made in a similar way from diazo ketone *9,* albeit in lower yield (Scheme 11). In addition, 8 is accompanied by 20-40% of an adduct of the carbene with solvent (benzene or toluene). Once more it appears that the 4,5,7,11-position is the one attacked, as judged by the similarity of the coupled and decoupled 11 B NMR spectra of **4** and **8.7** With ketone **4** in hand the way is open to synthesize a variety of bridged o-carboranes and to use such compounds to compare the effects of neighboring **carbon** and boron on the chemistry of the α -positions. We can mention a few details here. Thus **4** exchanges H for D faster at the methylene group adjacent to carbon than at the other methylene, adjacent to boron, or at the cage position (Scheme 111).

Ketone **4** can be converted to a tosyl hydrazone and then reduced with LiA1H4* to give two cyclopentenes in 61% **(10)** and 18% **(11)** relative yield.7 These two carborane versions of indene are accompanied by ca. 8% of the fully reduced cyclopentane, **12** (Scheme IV). The major product is assigned the structure **10** and the minor product **11** because these compounds have signals very similar to the downfield and upfield AB quartets of **4** respectively. **An** NOE experiment on **10** in which the framework C-H was irradiated showed an Overhauser effect on only one proton of the AB quartet centered at $\delta = 2.97$, just as was the case for **4.** Compounds **10** and **11** complement the already known9 carbon-carbon-bridged version of indene. It remains to be seen if their chemistries are similar.

Department of Chemistry **Shao-hai Wu** Princeton University **Maitland Jones, Jr.*** Princeton, New Jersey 08544

Received June 25, 1986

Mass Spectrometry, Lincoln, NE.
¹¹B NMR spectra were recorded at 80 MHz in CDCl₃ and signals (7) "B NMR spectra were recorded at 80 MHz in CDCI, and signals referenced to boron trifluoride etherate. Chemical shifts were measured **on** decoupled spectra and multiplicities **on** coupled spectra: **4,** 6 -2.9 (d, 1 B), -4.9 (s, 1 B), -7.0 (d, 1 B), -10.5 (br d, 4 B), -14.1 (d, 2 B), -16.0
(d, 1 B); 8, δ -2.4 (d, 1 B), -5.3 (s, 1 B), -7.7 (d, 1 B), -10.0 (d, 2 B),
-12.7 (d, 2 B), -13.7 (d, 2 B), -17.1 (d, 1 B); 10, δ -0.1 (s, (d, 1 B), -7.9 (d, 2 B), -9.7 (d, 2 B), -11.9 (d, **1** B), -13.0 (d, 2 B), -17.6 (d, 1 B). 'H NMR spectra were recorded at 250 MHz in CDCI, and signals referenced to Me₄Si: **10**, δ 6.16 (br s, 2 H), 3.83 (br s, 1
H), 3.10 (d, 1 H, J = 18.3 Hz), 2.85, (d, 1 H, J = 18.3 Hz); **11**, δ 6.28 (br s, 1 H), 6.04 (br **s,** 1 H), 3.82 (br **s,** 1 H), 1.99 (br s, 2 H). We thank Mary W. Baum for her usual expert help with the NMR spectroscopy.

⁽⁸⁾ Caglioti, L.; Magi, M. *Tetrahedron* **1963,** *19,* 1127.

⁽⁹⁾ **Young,** D. **A.** T.; Paxson, T. E.; Hawthorne, M. F. *Inorg. Chem.* **1971,** *10,* 786.